250 research outputs found

    Discovering markers of healthy aging:a prospective study in a Danish male birth cohort

    Get PDF
    There is a pressing need to identify markers of cognitive and neural decline in healthy late-midlife participants. We explored the relationship between cross-sectional structural brain-imaging derived phenotypes (IDPs) and cognitive ability, demographic, health and lifestyle factors (non-IDPs). Participants were recruited from the 1953 Danish Male Birth Cohort (N=193). Applying an extreme group design, members were selected in 2 groups based on cognitive change between IQ at age ~20y (IQ-20) and age ~57y (IQ-57). Subjects showing the highest (n=95) and lowest (n=98) change were selected (at age ~57) for assessments on multiple IDPs and non-IDPs. We investigated the relationship between 453 IDPs and 70 non-IDPs through pairwise correlation and multivariate canonical correlation analysis (CCA) models. Significant pairwise associations included positive associations between IQ-20 and gray-matter volume of the temporal pole. CCA identified a richer pattern - a single "positive-negative" mode of population co-variation coupling individual cross-subject variations in IDPs to an extensive range of non-IDP measures (r = 0.75, Pcorrected < 0.01). Specifically, this mode linked higher cognitive performance, positive early-life social factors, and mental health to a larger brain volume of several brain structures, overall volume, and microstructural properties of some white matter tracts. Interestingly, both statistical models identified IQ-20 and gray-matter volume of the temporal pole as important contributors to the inter-individual variation observed. The converging patterns provide novel insight into the importance of early adulthood intelligence as a significant marker of late-midlife neural decline and motivates additional study

    Glucagon-like peptide-1 analogs against antipsychotic-induced weight gain: potential physiological benefits

    Get PDF
    BACKGROUND: Antipsychotic-induced weight gain constitutes a major unresolved clinical problem which may ultimately be associated with reducing life expectancy by 25 years. Overweight is associated with brain deterioration, cognitive decline and poor quality of life, factors which are already compromised in normal weight patients with schizophrenia. Here we outline the current strategies against antipsychotic-induced weight gain, and we describe peripheral and cerebral effects of the gut hormone glucagon-like peptide-1 (GLP-1). Moreover, we account for similarities in brain changes between schizophrenia and overweight patients. DISCUSSION: Current interventions against antipsychotic-induced weight gain do not facilitate a substantial and lasting weight loss. GLP-1 analogs used in the treatment of type 2 diabetes are associated with significant and sustained weight loss in overweight patients. Potential effects of treating schizophrenia patients with antipsychotic-induced weight gain with GLP-1 analogs are discussed. CONCLUSIONS: We propose that adjunctive treatment with GLP-1 analogs may constitute a new avenue to treat and prevent metabolic and cerebral deficiencies in schizophrenia patients with antipsychotic-induced weight gain. Clinical research to support this idea is highly warranted

    The impact of schizophrenia and intelligence on the relationship between age and brain volume

    Get PDF
    Age has been shown to have an impact on both grey (GM) and white matter (WM) volume, with a steeper slope of age-related decline in schizophrenia compared to healthy controls. In schizophrenia, the relation between age and brain volume is further complicated by factors such as lower intelligence, antipsychotic medication, and cannabis use, all of which have been shown to have independent effects on brain volume. In a study of first-episode, antipsychotic-naïve schizophrenia patients (N = 54) and healthy controls (N = 56), we examined the effects of age on whole brain measures of GM and WM volume, and whether these relationships were moderated by schizophrenia and intelligence (IQ). Secondarily, we examined lifetime cannabis use as a moderator of the relationship between age and brain volume. Schizophrenia patients had lower GM volumes than healthy controls but did not differ on WM volume. We found an age effect on GM indicating that increasing age was associated with lower GM volumes, which did not differ between groups. IQ did not have a direct effect on GM, but showed a trend-level interaction with age, suggesting a greater impact of age with lower IQ. There were no age effects on WM volume, but a direct effect of IQ, with higher IQ showing an association with larger WM volume. Lifetime cannabis use did not alter these findings significantly. This study points to effects of schizophrenia on GM early in the illness, before antipsychotic treatment is initiated, suggesting that WM changes may occur later in the disease process

    Sparse Decomposition and Modeling of Anatomical Shape Variation

    Get PDF
    Recent advances in statistics have spawned powerful methods for regression and data decomposition that promote sparsity, a property that facilitates interpretation of the results. Sparse models use a small subset of the available variables and may perform as well or better than their full counterparts if constructed carefully. In most medical applications, models are required to have both good statistical performance and a relevant clinical interpretation to be of value. Morphometry of the corpus callosum is one illustrative example. This paper presents a method for relating spatial features to clinical outcome data. A set of parsimonious variables is extracted using sparse principal component analysis, producing simple yet characteristic features. The relation of these variables with clinical data is then established using a regression model. The result may be visualized as patterns of anatomical variation related to clinical outcome. In the present application, landmark-based shape data of the corpus callosum is analyzed in relation to age, gender, and clinical tests of walking speed and verbal fluency. To put the data-driven sparse principal component method into perspective, we consider two alternative techniques, one where features are derived using a model-based wavelet approach, and one where the original variables are regressed directly on the outcome
    corecore